Exercise 91

A rocket is launched in the air. Its height, in meters above sea level, as a function of time, in seconds, is given by $h(t)=-4.9 t^{2}+229 t+234$. Find the maximum height the rocket attains.

Solution

Complete the square to write the quadratic function in vertex form.

$$
\begin{aligned}
h(t) & =-4.9 t^{2}+229 t+234 \\
& =-4.9\left(t^{2}-\frac{2290}{49} t-\frac{2340}{49}\right) \\
& =-4.9\left[\left(t^{2}-\frac{2290}{49} t+\frac{1145^{2}}{49^{2}}\right)-\frac{2340}{49}-\frac{1145^{2}}{49^{2}}\right] \\
& =-4.9\left[\left(t-\frac{1145}{49}\right)^{2}-\frac{1425685}{2401}\right] \\
& =-4.9\left(t-\frac{1145}{49}\right)^{2}+\frac{285137}{98}
\end{aligned}
$$

Therefore, the maximum height the rocket attains is $h=\frac{285137}{98} \approx 2909.56 \mathrm{~m}$, which occurs at $t=\frac{1145}{49} \approx 23.37 \mathrm{~s}$.

